Ultrathin (<1 μm) Substrate-Free Flexible Photodetector on Quantum Dot-Nanocellulose Paper
نویسندگان
چکیده
Conventional approaches to flexible optoelectronic devices typically require depositing the active materials on external substrates. This is mostly due to the weak bonding between individual molecules or nanocrystals in the active materials, which prevents sustaining a freestanding thin film. Herein we demonstrate an ultrathin freestanding ZnO quantum dot (QD) active layer with nanocellulose structuring, and its corresponding device fabrication method to achieve substrate-free flexible optoelectronic devices. The ultrathin ZnO QD-nanocellulose composite is obtained by hydrogel transfer printing and solvent-exchange processes to overcome the water capillary force which is detrimental to achieving freestanding thin films. We achieved an active nanocellulose paper with ~550 nm thickness, and >91% transparency in the visible wavelength range. The film retains the photoconductive and photoluminescent properties of ZnO QDs and is applied towards substrate-free Schottky photodetector applications. The device has an overall thickness of ~670 nm, which is the thinnest freestanding optoelectronic device to date, to the best of our knowledge, and functions as a self-powered visible-blind ultraviolet photodetector. This platform can be readily applied to other nano materials as well as other optoelectronic device applications.
منابع مشابه
Broadband Ge/SiGe quantum dot photodetector on pseudosubstrate
: We report the fabrication and characterization of a ten-period Ge quantum dot photodetector grown on SiGe pseudosubstrate. The detector exhibits tunable photoresponse in both 3- to 5- μm and 8- to 12- μm spectral regions with responsivity values up to about 1 mA/W at a bias of -3 V and operates under normal incidence radiation with background limited performance at 100 K. The relative respons...
متن کاملThe Effect of Structural Parameters on the Electronic States and Oscillator Strength of a Resonant Tunneling Quantum Well Infrared Photodetector
In this paper a resonant tunnelling quantum well infrared photodetector (RT-QWIP) is discussed. Each period of this photodetector structure comprises of a resonant tunnelling structure (AlAs/AlGaAs/AlAs) nearby a quantum well (AlGaAs/GaAs). In this photodetector, photocurrent is produced when an electron makes a transition from the ground state of the well to an excited state which is coupled t...
متن کاملGraphene/nitrogen-functionalized graphene quantum dot hybrid broadband photodetectors with a buffer layer of boron nitride nanosheets.
A high performance hybrid broadband photodetector with graphene/nitrogen-functionalized graphene quantum dots (NGQDs@GFET) is developed using boron nitride nanosheets (BN-NSs) as a buffer layer to facilitate the separation and transport of photoexcited carriers from the NGQD absorber. The NGQDs@GFET photodetector with the buffer layer of BN-NSs exhibits enhanced photoresponsivity and detectivit...
متن کاملQuantum Dot Infrared Photodetector
In this paper an estimation for the performance of QDIP as an element of FSO communication system is given and availiable solutions are compared against the requirements of FSO communication systems. A discussion of QDIP parameters has been presented through theoretical models and experimental data from literature. A relation is proposed for QDIP carrier capture limited modulation bandwith and ...
متن کاملModeling of an electrically tunable quantum dot photodetector for terahertz detection
The terahertz region (1-10 THz) has potential applications in many areas, such as chemical sensing, medical imaging and free-space optical communications. With the demonstration of terahertz sources, it is quite necessary to develop the detection technology in terahertz. Here we propose an electrically tunable quantum dot infrared photodetector to detect the terahertz region. The proposed detec...
متن کامل